Phytochemicals

A growing area of interest is the effect upon human health of trace chemicals, collectively called phytochemicals. These nutrients are typically found in edible plants, especially colorful fruits and vegetables, but also other organisms including seafood, algae, and fungi. The effects of phytochemicals increasingly survive rigorous testing by prominent health organizations. One of the principal classes of phytochemicals are polyphenol antioxidants, chemicals which are known to provide certain health benefits to the cardiovascular system and immune system. These chemicals are known to down-regulate the formation of reactive oxygen species, key chemicals in cardiovascular disease.

Perhaps the most rigorously tested phytochemical is zeaxanthin, a yellow-pigmented carotenoid present in many yellow and orange fruits and vegetables. Repeated studies have shown a strong correlation between ingestion of zeaxanthin and the prevention and treatment of age-related macular degeneration (AMD).[13] Less rigorous studies have proposed a correlation between zeaxanthin intake and cataracts.[14] A second carotenoid, lutein, has also been shown to lower the risk of contracting AMD. Both compounds have been observed to collect in the retina when ingested orally, and they serve to protect the rods and cones against the destructive effects of light.

Another carotenoid, beta-cryptoxanthin, appears to protect against chronic joint inflammatory diseases, such as arthritis. While the association between serum blood levels of beta-cryptoxanthin and substantially decreased joint disease has been established, neither a convincing mechanism for such protection nor a cause-and-effect have been rigorously studied.[15] Similarly, a red phytochemical, lycopene, has substantial credible evidence of negative association with development of prostate cancer.
The correlations between the ingestion of some phytochemicals and the prevention of disease are, in some cases, enormous in magnitude.


Even when the evidence is obtained, translating it to practical dietary advice can be difficult and counter-intuitive. Lutein, for example, occurs in many yellow and orange fruits and vegetables and protects the eyes against various diseases. However, it does not protect the eye nearly as well as zeaxanthin, and the presence of lutein in the retina will prevent zeaxanthin uptake. Additionally, evidence has shown that the lutein present in egg yolk is more readily absorbed than the lutein from vegetable sources, possibly because of fat solubility.[16] At the most basic level, the question "should you eat eggs?" is complex to the point of dismay, including misperceptions about the health effects of cholesterol in egg yolk, and its saturated fat content.
As another example, lycopene is prevalent in tomatoes (and actually is the chemical that gives tomatoes their red color). It is more highly concentrated, however, in processed tomato products such as commercial pasta sauce, or
tomato soup, than in fresh "healthy" tomatoes. Yet, such sauces tend to have high amounts of salt, sugar, other substances a person may wish or even need to avoid.

Antioxidants

Antioxidants are a recent discovery. As cellular metabolism/energy production requires oxygen, potentially damaging (e.g. mutation causing) compounds known as free radicals can form. Most of these are oxidizers (i.e. acceptors of electrons) and some react very strongly. For normal cellular maintenance, growth, and division, these free radicals must be sufficiently neutralized by antioxidant compounds. Some are produced by the human body with adequate precursors (glutathione, Vitamin C) and those that the body cannot produce may only be obtained through the diet through direct sources (Vitamin C in humans, Vitamin A, Vitamin K) or produced by the body from other compounds (Beta-carotene converted to Vitamin A by the body, Vitamin D synthesized from cholesterol by sunlight). Phytochemicals (Section Below) and their subgroup polyphenols are the majority of antioxidants; about 4,000 are known. Different antioxidants are now known to function in a cooperative network, e.g. vitamin C can reactivate free radical-containing glutathione or vitamin E by accepting the free radical itself, and so on. Some antioxidants are more effective than others at neutralizing different free radicals. Some cannot neutralize certain free radicals. Some cannot be present in certain areas of free radical development (Vitamin A is fat-soluble and protects fat areas, Vitamin C is water soluble and protects those areas). When interacting with a free radical, some antioxidants produce a different free radical compound that is less dangerous or more dangerous than the previous compound. Having a variety of antioxidants allows any byproducts to be safely dealt with by more efficient antioxidants in neutralizing a free radical's butterfly effect.

Other nutrients

Other micronutrients include antioxidants and phytochemicals. These substances are generally more recent discoveries which: have not yet been recognized as vitamins; are still under investigation; or contribute to health but are not necessary for life. Phytochemicals may act as antioxidants, but not all phytochemicals are antioxidants.

Water

About 70% of the non-fat mass of the human body is made of water.[citation needed] To function properly, the body requires between one and seven liters of water per day to avoid dehydration; the precise amount depends on the level of activity, temperature, humidity, and other factors.[citation needed] With physical exertion and heat exposure, water loss will increase and daily fluid needs may increase as well.

It is not clear how much water intake is needed by healthy people, although some experts assert that 8–10 glasses of water (approximately 2 liters) daily is the minimum to maintain proper hydration.[7] The notion that a person should consume eight glasses of water per day cannot be traced back to a scientific source.[8] The effect of water intake on weight loss and on constipation is also still unclear.[9] Original recommendation for water intake in 1945 by the Food and Nutrition Board of the National Research Council read: "An ordinary standard for diverse persons is 1 milliliter for each calorie of food. Most of this quantity is contained in prepared foods."[10] The latest dietary reference intake report by the United States National Research Council in general recommended (including food sources): 2.7 liters of water total for women and 3.7 liters for men.[11] Specifically, pregnant and breastfeeding women need additional fluids to stay hydrated. According to the Institute of Medicine—who recommend that, on average, women consume 2.2 litres and men 3.0 litres—this is recommended to be 2.4 litres (approx. 9 cups) for pregnant women and 3 litres (approx. 12.5 cups) for breastfeeding women since an especially large amount of fluid is lost during nursing.[12]

For those who have healthy kidneys, it is rather difficult to drink too much water,[citation needed] but (especially in warm humid weather and while exercising) it is dangerous to drink too little. People can drink far more water than necessary while exercising, however, putting them at risk of water intoxication, which can be fatal. In particular large amounts of de-ionized water are dangerous.

Normally, about 20 percent of water intake comes in food, while the rest comes from drinking water and assorted beverages (caffeinated included). Water is excreted from the body in multiple forms; including urine and feces, sweating, and by water vapor in the exhaled breath.

Vitamins

As with the minerals discussed above, twelve vitamins are recognized as essential nutrients, necessary in the diet for good health. (Vitamin D is the exception: it can alternatively be synthesized in the skin, in the presence of UVB radiation.) Certain vitamin-like compounds that are recommended in the diet, such as carnitine, are indispensable for survival and health; but these are not strictly "essential" because the human body has some capacity to produce them from other compounds. Moreover, thousands of different phytochemicals have recently been discovered in food (particularly in fresh vegetables), which may have desirable properties including antioxidant activity (see below). Other essential nutrients not classed as vitamins include essential amino acids (see above), choline, essential fatty acids (see above), and the minerals discussed in the preceding section.

Vitamin deficiencies may result in disease conditions: goitre, scurvy, osteoporosis, impaired immune system, disorders of cell metabolism, certain forms of cancer, symptoms of premature aging, and poor psychological health (including eating disorders), among many others.[6] Excess of some vitamins is also dangerous to health (notably vitamin A); and deficiency or excess of minerals can also have serious health consequences.

Minerals

Dietary minerals are the chemical elements required by living organisms, other than the four elements carbon, hydrogen, nitrogen, and oxygen that are present in common organic molecules. The term "mineral" is archaic, since the intent is to describe simply the less common elements in the diet: heavier than the four just mentioned; including several metals; and often occurring as ions in the body. Some dietitians recommend that these be supplied from foods in which they occur naturally, or at least as complex compounds, or sometimes even from natural inorganic sources (such as calcium carbonate from ground oyster shells). On the other hand, minerals are often artificially added to the diet as supplements, the most famous being iodine in iodized salt.

Macrominerals
Many elements are essential in quantity; also called "bulk minerals". Some are structural, but many play a role as
electrolytes.[3] Elements with recommended dietary allowance (RDA) greater than 200 mg/day are the following, in alphabetical order (with informal or folk-medicine perspectives in parentheses):
Calcium, a common electrolyte, but also structural (for muscle and digestive system health, builds bone, neutralizes acidity, clears toxins, helps blood stream)
Chlorine as chloride ions; very common electrolyte; see sodium, below
Magnesium, required for processing ATP and related reactions (builds bone, causes strong peristalsis, increases flexibility, increases alkalinity)
Phosphorus, required component of bones; essential for energy processing[4]
Potassium, a very common electrolyte (heart and nerve health)
Sodium, a very common electrolyte; not generally found in dietary supplements, despite being needed in large quantities, because the ion is very common in food: typically as sodium chloride, or common salt
Sulfur for three essential amino acids and therefore many proteins (skin, hair, nails, liver, and pancreas)

Trace minerals
Many elements are required in trace amounts, usually because they play a
catalytic role in enzymes.[5] Some trace mineral elements (RDA < 200 mg/day) are, in alphabetical order:
Cobalt required for biosynthesis of vitamin B12 family of coenzymes
Copper required component of many redox enzymes, including cytochrome c oxidase
Chromium required for sugar metabolism
Iodine required for the biosynthesis of thyroxin; needed in larger quantities than others in this list, and sometimes classified with the macrominerals
Iron required for many enzymes, and for hemoglobin and some other proteins
Manganese (processing of oxygen)
Molybdenum required for xanthine oxidase and related oxidases
Nickel present in urease
Selenium required for peroxidase (antioxidant proteins)
Vanadium (Speculative: there is no established RDA for vanadium. No specific biochemical function has been identified for it in humans, although vanadium is found in lower organisms.)
Zinc required for several enzymes such as carboxypeptidase, liver alcohol dehydrogenase, carbonic anhydrase

Protein

Proteins are the basis of many animal body structures (e.g. muscles, skin, and hair). Each molecule is composed of amino acids, sometimes many thousands, which are characterized by inclusion of nitrogen and sometimes sulphur. The body requires amino acids to produce new proteins (protein retention) and to replace damaged proteins (maintenance). Excess amino acids are discarded, typically in the urine. For all animals, some amino acids are essential (an animal cannot produce them internally) and some are non-essential (the animal can produce them from other nitrogen-containing compounds). About twenty amino acid are found in the human body, and about ten of these are essential, and therefore must be included in the diet. A diet that contains adequate amounts of amino acids (especially those that are essential) is particularly important when there is greater need: in early development and maturation, pregnancy, lactation, or injury. A complete protein source contains all the essential amino acids; an incomplete protein source lacks one or more essential amino acid. It is possible to combine two incomplete protein sources (e.g. rice and beans) to make a complete protein source. Sources of dietary protein include meats, tofu and other soy-products, eggs, grains, legumes, and dairy products such as milk and cheese. A few amino acids from protein can be converted into glucose and used for fuel through a process called gluconeogenesis. The amino acids remaining after such conversion are discarded.

Fiber

Fiber is a carbohydrate (or a polysaccharide) that is incompletely absorbed in humans and in some other animals. Like all carbohydrates, when it is metabolized it can produce four Calories (kilocalories) of energy per gram: but in fact it accounts for less than that because of its limited absorption. Dietary fiber consists mainly of cellulose, a large carbohydrate polymer that is indigestible because humans do not have the required enzymes. There are two subcategories: soluble and insoluble fiber. Whole grains, fruits (especially plums, prunes, and figs), and vegetables are rich in dietary fiber. Fiber is important to digestive health and is thought to reduce the risk of colon cancer. It can help in alleviating both constipation and diarrhea. Fiber provides bulk to the intestinal contents, and insoluble fiber stimulates peristalsis: the rhythmic muscular contractions passing along the digestive tract. Some soluble fibers produce a solution of high viscosity: a gel, which slows the movement of food through the intestines. Fiber, especially from whole grains, may help lessen insulin spikes and reduce the risk of diabetes.

Essential fatty acids

Most fatty acids are non-essential, meaning the body can produce them as needed. However, in humans at least two fatty acids are essential and must be included in the diet. An appropriate balance of essential fatty acids—omega-3 and omega-6 fatty acids—is important for health. Both of these "omega" long-chain polyunsaturated fatty acids are substrates for a class of eicosanoids known as prostaglandins, which have roles throughout the human body. They are hormones, in some respects. The omega-3 eicosapentaenoic acid (EPA), which can be made in the human body from the omega-3 essential fatty acid alpha-linolenic acid (LNA), or taken in through marine food sources, serves as a building block for series 3 prostaglandins (e.g. weakly inflammatory PGE3). The omega-6 dihomo-gamma-linolenic acid (DGLA) serves as a building block for series 1 prostaglandins (e.g. anti-inflammatory PGE1), whereas arachidonic acid (AA) serves as a building block for series 2 prostaglandins (e.g. pro-inflammatory PGE 2). Both DGLA and AA can be made from the omega-6 linoleic acid (LA) in the human body, or can be taken in directly through food. An appropriately balanced intake of omega-3 and omega-6 partly determines the relative production of different prostaglandins: one reason a balance between omega-3 and omega-6 is important for cardiovascular health. In industrialized societies, people typically consume large amounts of processed vegetable oils, which have reduced amounts of the essential fatty acids along with too much of omega-6 fatty acids relative to omega-3 fatty acids.

The conversion rate of omega-6 DGLA to AA largely determines the production of the prostaglandins PGE1 and PGE2. Omega-3 EPA prevents AA from being released from membranes, thereby skewing prostaglandin balance away from pro-inflammatory PGE2 (made from AA) toward anti-inflammatory PGE1 (made from DGLA). Moreover, the conversion (desaturation) of DGLA to AA is controlled by the enzyme delta-5-desaturase, which in turn is controlled by hormones such as insulin (up-regulation) and glucagon (down-regulation). The amount and type of carbohydrates consumed, along with some types of amino acid, can influence processes involving insulin, glucagon, and other hormones; therefore the ratio of omega-3 versus omega-6 has wide effects on general health, and specific effects on immune function and inflammation, and mitosis (i.e. cell division).
Good sources of essential fatty acids include most vegetables,
nuts, seeds, and marine oils,[2] Some of the best sources are fish, flax seed oils, soy beans, pumpkin seeds, sunflower seeds, and walnuts.

Fat

A molecule of fat consists of several fatty acids (containing long chains of carbon and hydrogen atoms), bonded to a glycerol. They are typically found as triglycerides (three fatty acids attached to one glycerol backbone). Fats may be classified as saturated or unsaturated. Saturated fats have all of the carbon atoms in their fatty acid chains bonded to hydrogen atoms, whereas unsaturated fats have some of these carbon atoms double-bonded, so their molecules have relatively few hydrogen atoms. Unsaturated fats may be further classified as monounsaturated (one double-bond) or polyunsaturated (many double-bonds). Trans fats are a type of unsaturated fat with trans-isomer fatty acid, typically created in an industrial process called (partial) hydrogenation.

Many studies have shown that unsaturated fats, particularly monounsaturated fats, are best in the human diet. Saturated fats, typically from animal sources, are next, while trans fats are to be avoided. Saturated and trans fats are typically solid at room temperature (such as butter or lard), while unsaturated fats are typically liquids (such as olive oil or flaxseed oil). Trans fats are very rare in nature, but have properties useful in the food processing industry.

Carbohydrates

Carbohydrates may be classified as monosaccharides, disaccharides, or polysaccharides by the number of monomer (sugar) units they contain. They constitute a large proportion of foods such as rice, noodles, bread, and other grain-based products. Monosaccharides contain one sugar unit, disaccharides two, and polysaccharides three or more. Polysaccharides are often referred to as complex carbohydrates because they are long chains of sugar units, whereas monosaccharides and disaccharides are simpler. The difference is important: complex carbohydrates take longer to digest and absorb since their sugar units are processed one-by-one off the ends of the chains. The spike in blood-sugar levels after ingestion of simple sugars is thought to be involved in causing heart and vascular disease. Simple sugars form a greater part of modern diets, leading to more cardiovascular disease in populations. Simple carbohydrates are absorbed quickly, and therefore raise blood-sugar levels more rapidly.

Nutrients

There are seven major classes of nutrients: carbohydrates, fats, fiber, minerals, protein, vitamins, and water.

These nutrient classes can be categorized as either macronutrients (needed in relatively large amounts) or micronutrients (needed in smaller quantities). The macronutrients are carbohydrates, fats, fiber, proteins, and water. The micronutrients are minerals and vitamins.
The macronutrients (excluding fiber and water) provide
energy, which is measured in Joules or kilocalories (often called "Calories" and written with a capital C to distinguish them from gram calories). Carbohydrates and proteins provide 17 kJ (4 kcal) of energy per gram, while fats provide 37 kJ (9 kcal) per gram.[1] Vitamins, minerals, fiber, and water do not provide energy, but are necessary for other reasons.

Molecules of carbohydrates and fats consist of carbon, hydrogen, and oxygen atoms. Carbohydrates range from simple monosaccharides (glucose, fructose, galactose) to complex polysaccharides (starch). Fats are triglycerides, made of various fatty acid monomers bound to glycerol. Some fatty acids, but not all, are essential in the diet: they cannot be synthesized in the body. Protein molecules contain nitrogen atoms in addition to the elements of carbohydrates and fats. The nitrogen-containing monomers of protein are amino acids, and they include some essential amino acids. They fulfill many roles other than energy metabolism; and when they are used as fuel, getting rid of the nitrogen places a burden on the kidneys.
Other micronutrients include
antioxidants and phytochemicals.

Most foods contain a mix of some or all of the nutrient classes. Some nutrients are required regularly, while others are needed only occasionally. Poor health can be caused by an imbalance of nutrients, whether an excess or a deficiency.

Nutritional science

Nutritional science investigates the metabolic and physiological responses of the body to diet. With advances in the fields of molecular biology, biochemistry, and genetics, the study of nutrition is increasingly concerned with metabolism and metabolic pathways: the sequences of biochemical steps through which substances in living things change from one form to another.
The
human body contains chemical compounds, such as water, carbohydrates (sugar, starch, and fiber), amino acids (in proteins), fatty acids (in lipids), and nucleic acids (DNA and RNA). These compounds in turn consist of elements such as carbon, hydrogen, oxygen, nitrogen, phosphorus, calcium, iron, zinc, magnesium, manganese, and so on. All of these chemical compounds and elements occur in various forms and combinations (e.g. hormones, vitamins, phospholipids, hydroxyapatite), both in the human body and in the plant and animal organisms that humans eat.

The human body consists of elements and compounds ingested, digested, absorbed, and circulated through the
bloodstream to feed the cells of the body. Except in the unborn fetus, the digestive system is the first system involved. In a typical adult, about seven liters of digestive juices enter the lumen of the digestive tract.[citation needed][clarification needed] These break chemical bonds in ingested molecules, and modulate their conformations and energy states. Though some molecules are absorbed into the bloodstream unchanged, digestive processes release them from the matrix of foods. Unabsorbed matter, along with some waste products of metabolism, is eliminated from the body in the feces.

Studies of nutritional status must take into account the state of the body before and after experiments, as well as the
chemical composition of the whole diet and of all material excreted and eliminated from the body (in urine and feces). Comparing the food to the waste can help determine the specific compounds and elements absorbed and metabolized in the body. The effects of nutrients may only be discernible over an extended period, during which all food and waste must be analyzed. The number of variables involved in such experiments is high, making nutritional studies time-consuming and expensive, which explains why the science of human nutrition is still slowly evolving.

In general, eating a wide variety of fresh, whole (unprocessed), foods has proven favorable compared to monotonous diets based on processed foods.[
citation needed] In particular, the consumption of whole-plant foods slows digestion and allows better absorption, and a more favorable balance of essential nutrients per Calorie, resulting in better management of cell growth, maintenance, and mitosis (cell division), as well as better regulation of appetite and blood sugar. Regularly scheduled meals (every few hours) have also proven more wholesome than infrequent or haphazard ones.[citation needed]

Nutrition

Nutrition (also called nourishment or aliment) is the provision, to cells and organisms, of the materials necessary (in the form of food) to support life. Many common health problems can be prevented or alleviated with good nutrition.

The
diet of an organism refers to what it eats. Dietitians are health professionals who specialize in human nutrition, meal planning, economics, preparation, and so on. They are trained to provide safe, evidence-based dietary advice and management to individuals (in health and disease), as well as to institutions.

Poor diet can have an injurious impact on health, causing deficiency diseases such as
scurvy, beriberi, and kwashiorkor; health-threatening conditions like obesity and metabolic syndrome, and such common chronic systemic diseases as cardiovascular disease, diabetes, and osteoporosis.